PVDF Hollow Fiber and Nano Fiber Membranes for Fresh Water Reclamation using Membrane Distillation

نویسندگان

  • Lijo Francis
  • Noreddine Ghaffour
  • Ahmad Alsaadi
  • Suzana P. Nunes
  • Gary L. Amy
چکیده

Polyvinylidine fluoride (PVDF) hollow fiber and nanofibrous membranes are engineered and successfully fabricated using dry-jet wet spinning and electrospinning techniques, respectively. Fabricated membranes are characterized for their morphology, average pore size, pore size distribution, nanofiber diameter distribution, thickness and water contact angle. Direct contact membrane distillation (DCMD) performances of the fabricated membranes have been investigated by using a locally designed and fabricated, fully automated MD bench scale unit and DCMD module. Electrospun nanofibrous membranes showed a water flux as high as 36 L m -2 h -1 whereas hollow fiber membranes showed a water flux of 31.6 L m -2 h -1 , at a feed inlet temperature of 80 °C and at a permeate inlet temperature of 20 °C.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Salt Additives and Response Surface Methodology for Optimization of PVDF Hollow Fiber Membrane in DCMD and AGMD Processes

In this study, the influence of the salts as an additive on the performance of the membrane was investigated and an extensive work was performed to optimize PVDF hollow fiber membranes through a response surface methodology (RSM). The prepared membranes were characterized by SEM, contact angle and LEP measurement. Then, the RSM was used for the optimization of surface pore size, porosity and hy...

متن کامل

Correlated Effect of Air Gap and PVP Concentration on the Structure and Performance of PVDF Ultrafiltration Hollow Fiber Membrane

Polyvinylidene fluoride/polyvinylpyrrolidone (PVDF/PVP) hollow fiber membranes were fabricated by dry-jet wet-spinning process. The correlated effects of the air gap length and PVP concentration ((1) the air gap length effect at the low and high PVP concentration in the dope solutions, as well as (2) the effect of the PVP concentration at the same air gap length) on the cross-section structure ...

متن کامل

Polyvinylidene Fluoride Hollow Fiber Membrane Contactor Incorporating Surface Modifying Macromolecule for Carbon Dioxide Stripping from Water

Porous surface modified polyvinylidene ï‌‚uoride (PVDF) hollow fiber membranes are fabricated through a dry-wet phased inversion process. Surface modifying macromolecules (SMM) (1 wt. %) are used as additives in the spinning dope. The performance of the surface modified membrane in contactor application for CO2 stripping from water is assessed through the fabricated gas–liquid membrane contacto...

متن کامل

Mathematical Modeling of Carbon Dioxide Removal from the CO2/CH4 Gas Mixture Using Amines and Blend of Amines in Polypropylene: A Comparison between Hollow Fiber Membrane Contactor and Other Membranes

In this work, a mathematical model is established to describe the removal of CO2 from gaseous mixtures including CH4 and CO2 in a polypropylene hollow fiber membrane contactor in the presence of conventional absorbents such as monoethanolamine (MEA), methyldiethanolamine (MDEA), and a blend of them. Modeling was performed in axial and radial directions under the fully-wet condition for counterc...

متن کامل

Separation of Carboxylic Acids from Aqueous Solutions using Hollow Fiber Membrane Contactors

Separation of formic, acetic, and propionic acids from the aqueous stream using membrane solvent extraction has been studied using three different membrane contactors made of polysulfone (PS), polyethersulfone (PES), and polyvinylidene fluoride (PVDF) using two different solvents; including ethyl acetate (EA) and diisopropyl ether (DIPE). The efciency of the membrane and e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016